
AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

The ArrayList Class

The ArrayList class implements a dynamic array. It provides methods to insert, delete, and 
retrieve values from an ordered list of elements, as well as other useful methods.

Arrays in Java have a fixed size, which means once you create an array, you cannot change it’s 
length. If you wish to add a new element to, or delete an element from, an existing array, you will 
need to create a totally new array and copy elements from the original array into the new one. This 
requires extra code. The Java ArrayList class efficiently implements code with this functionality 
so that other programmers do not need to struggle to do so.

For AP Computer Science A, you will need to learn how to use the basic functionality of the 
ArrayList class, and be able to answer questions that require you to know the differences 
between the use of arrays versus the use of the ArrayList class.

Java Collections Hierarchy

The ArrayList class belongs to the Collections Hierarchy, a library of useful Java interfaces and 
utility classes that provide efficient data structures for storing, manipulating, and accessing groups 
of objects. Below is a diagram of some of the interfaces and classes within the Java 
Collections Hierarchy. The interface and class we discuss in this document are colored green.

The different interfaces and classes of the collections hierarchy are used for different purposes. For 
an ordered collection of objects that may contain duplicates, then an implementation of the List 
interface may be used. If order doesn’t matter and duplicate elements are disallowed, then an 
implementation of the Set interface will likely be the better choice. If the elements must be 
ordered, then it may be most suitable to use the PriorityQueue class.

You will notice that there are different implementations of the List and Set interfaces shown. 
The reasons for choosing one implementation over the other is far beyond the scope AP Computer 
Science A and of this document. For students who aren’t satisfied with that answer, a simplified 
explanation is: one implementation may be more efficient for certain uses – for example, an 
ArrayList may be more efficient when the collection is accessed (read) more frequently than 
modified, and a LinkedList may be more efficient when the collection elements will be added or 
deleted frequently. For most cases, the choice will be inconsequential.

Page 1 of 7



AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

The List Interface

The List interface defines all the methods required for an implementation of the List interface. 
In the diagram on the previous page, there are two different implementations of the List interface 
shown: ArrayList and LinkedList. If a program is implemented using an ArrayList and it 
is later found that a LinkedList would be more efficient, it can be relatively easy to change the 
underlying implementation with minimal changes to the program. (Although this does assume some 
competency by the original programmer.)

The methods included in the AP Java Subset that are applicable to the ArrayList class are all 
defined in the List interface (or inherited from the Collection interface). These are:

Method Description

E get(int index) Returns the element at position index in the list

boolean add(E obj)
void add(int index, E obj)

If no index is given, the element, obj, is appended 
to the end of the list and true is returned. If an index 
is given, the element, obj, is inserted into the list at 
the index given by index, shifting all elements 
starting from that index one position to the right.

E set(int index, E obj) Replaces the element at position index with the 
element obj; returns the element that was previously 
at that position.

E remove(int index) Removes the element from position index, shifting 
all elements after that element to the left by one index 
position.

int size() Returns the number of elements in the list.

You can build a strong understanding of the ArrayList class by completing the guided exercises.

Declaring and Initializing an Object (Review)

In this section, we review how to declare and initialize objects, taking a String object as an 
example. The following declaration of a String object allocates a place to store the reference to a 
String object. The result of the statement is shown diagrammatically to the right of the statement.

String myString;
?

It is important to understand that the statement only creates a place to store the reference to the 
String, it does not allocate any space to store a String object. Also, the variable is not 
initialized to any particular value (represented by the question mark in the diagram), so trying to 
read the value will result in an error.

Page 2 of 7



AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

If we wish to actually instantiate a String object, or any other object, we must call the constructor 
for the class. The constructor is a special method within the class that shares the same name as the 
class and has the purpose of initializing the fields of the class. The following statement declares and 
initializes a String object. Again, the result of the statement is shown diagrammatically to the 
right of the statement.

String myString = new String("First"); myString

First

Java Generics and Declaring an ArrayList

When we declare an array of to store data, we specify the type of element to be stored within the 
array, followed by square brackets. For example: String[] myStrArray declares an array that 
may store objects of type String (or more accurately references to objects of type String).

When we declare an ArrayList object, the type is ArrayList. Yet we need a way to say what 
type of object will be stored as elements within the ArrayList. This is done using generics, also 
known as parameterized types.

Recall that the values passed to a method are called the method parameters, and the parameters are 
enclosed in parentheses immediately after the method name. For example, the String class has a 
method named substring that takes two parameters of type int, named from and to in the 
method signature.

When we have a class that requires a type parameter, the type parameter is placed within angle 
brackets (between < and > ). As examples, an ArrayList requires a type parameter to know what 
type of objects the ArrayList will be used to store. The following statement declares an 
ArrayList named myStrList that can store objects of type String.

ArrayList<String> myStrList;

If more than one type parameter is required, such as with the Map class, the type parameters are 
separated by commas: Map<String, Integer> myMap; .

Initializing an ArrayList

To instantiate an object of any class, the constructor is called. The following statement declares 
variable of type ArrayList that will store objects of type String. The statement passes the type 
String as the type parameter. It then instantiates an object of type ArrayList, again passing the 
type String to the constructor as the type parameter.

The type parameter in the data type (on the left) must be the same as the type parameter passed to 
the constructor (on the right). In this example, the ArrayList constructor takes a type parameter 
but takes no method parameters – the parentheses are empty.

Page 3 of 7



AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

Java generics (type parameters) were introduced in Java 5, and the type parameter was required 
until the “diamond operator” was introduced in Java 7. Now, the angle brackets after the 
constructor can be left empty and the type will be inferred from the type parameter passed to the 
data type. Thus, the statement below is equivalent to the previous Java statement, with the opening 
and closing angle brackets ( <> ) being referred to as the diamond operator.

Using ArrayList

Consider the following code and the diagram that represents the structure created in memory.

1
2
3

String[] myStrArray = new String[2];
myStrArray[0] = "Hello";
myStrArray[1] = "World";

Line 1 declares and initializes an empty array that can 
store two elements, while lines 2 and 3 set the references 
at array index 0 and array index 1 to the String values 
“Hello” and “World”, respectively.

The following code creates approximately the same data structure, implemented using an 
ArrayList rather than an array.

1
2
3

ArrayList<String> myStrList = new ArrayList<>();
myStrList.add("Hello");
myStrList.add("World");

The diagram to the right represents the structure the 
above code creates in memory. Line 1 of the code 
declares and initializes an empty ArrayList that can 
store an indefinite number of elements (limited by the 
amount of memory the program can use). Lines 2 and 3 
add the String values “Hello” and “World”, each 
time to the end of the list.

myStrList

0

1 World

Hello

The remaining methods in the Java AP Subset are described in a table at the end of this document. 
Their use will be learned by completing exercises. 

Page 4 of 7



AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

When to Use Arrays

Comparing ArrayList to arrays, it may seem that ArrayList, in almost all cases, is more 
convenient to use than ArrayList. Here we discuss two particular use cases when we may 
choose to use an array rather than an ArrayList: firstly, when the data is unchanging, and 
secondly, when there is a lot of data that may be stored as a primitive type.

Use Arrays for Unchanging Data

If the number of data items to be stored is unchanging and known at the time of writing the 
program, then initializing an array is slightly more compact and convenient, and the additional 
functionality of an ArrayList will not be used. Consider the following data structure and the 
code for creating the structure as an array versus as an ArrayList.

myStrList

0

1 fin

la

2

3 monde

du

Array of String Implementation

1 String[] myStrArray = { "la", "fin", "du", "monde" };

ArrayList of String Implementation

1
2
3
4
5

ArrayList<String> myStrList = new ArrayList<>();
myStrList.add("la");
myStrList.add("fin");
myStrList.add("du");
myStrList.add("monde");

The array implementation does not require method calls, and the compiler is able create the data 
structure. For the ArrayList implementation, creating the data structure requires method calls 
and the execution of code. This will be done at run time, so likely adds some small overhead in 
execution time and memory use. In almost every way an array is preferable to an ArrayList.

Page 5 of 7



AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

Consider Using an Array for Storing Large Amounts of Primitive Type Data

The type parameter passed to ArrayList must be an object. This means the type parameter 
cannot be a primitive type.

In order to store primitive types – such as int, double, or boolean – in an ArrayList, 
objects of the appropriate wrapper class (Integer, Double, or Boolean) must be used. The 
diagram below compares the data structures created to store a few double types in an array versus 
storing the same values in an ArrayList, and example code that will create each structure is 
given below the diagram.

myDoubleList

0

1 1.0

2 7.13

3.14

reference value

0
1
2

1.0
7.13

3.14

myDoubleArray

value

Array of double Implementation

1 double[] myDoubleArray = { 3.14, 1.0, 7.13 };

ArrayList of Double Implementation

1
2
3
4

ArrayList<Double> myDoubleList = new ArrayList<>();
myStrList.add(3.14);
myStrList.add(1.0);
myStrList.add(7.13);

In terms of memory space, the array implementation need only store the data values, whereas the 
ArrayList implementation needs to store, at minimum, the data values and the references 
(locations where to find the reference values).

In terms of execution time, to access a data item in an array, the computer need only calculate the 
offset from the start of the array and read the data value; whereas to access a data item in an 
ArrayList, reading the offset from the start of the array results in the reference value, and the 
computer is then required to perform another read to get the value that is referred to by the 
reference. (Memory fetching and caching is another, more advanced consideration: the values 
stored in an array are contiguous, whereas values stored in an ArrayList of objects will likely 
not be).

Page 6 of 7



AP Computer Science A – Unit 07: ArrayList English Name: ____________________

Java ArrayList Class ©2025 Chris Nielsen – www.nielsenedu.com

Using an ArrayList for primitive types will be much less efficient than using an array. However, 
with the speed and memory capacity of modern computers, choosing an array over an ArrayList 
should only impact performance when dealing with a very large amount of data or when the data is 
used in a performance-critical section.

Java AP Subset ArrayList Methods

The following table provides statements that show the use of common methods that modify an 
ArrayList of String, along with equivalent statements for an array of String.

int i = myStrList.size(); int i = myStrArray.length;

myStrList.add("World");
myStrList.add(0, "Hello");

There are no array equivalents; this method 
appends a new element to the array, or inserts 
an element at the given index.

myStrList.set(1, "teacher"); myStrArray[1] = "teacher";

String s = myStrList.get(1); String s = myStrArray[1];

MyStrList.remove(1); There is no array equivalent; this method 
removes an element from the list.

Page 7 of 7


