AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

The ArrayList Class

The ArrayList class implements a dynamic array. It provides methods to insert, delete, and
retrieve values from an ordered list of elements, as well as other useful methods.

Arrays in Java have a fixed size, which means once you create an array, you cannot change it’s
length. If you wish to add a new element to, or delete an element from, an existing array, you will
need to create a totally new array and copy elements from the original array into the new one. This
requires extra code. The Java ArrayList class efficiently implements code with this functionality
so that other programmers do not need to struggle to do so.

For AP Computer Science A, you will need to learn how to use the basic functionality of the
ArrayList class, and be able to answer questions that require you to know the differences
between the use of arrays versus the use of the ArrayList class.

Java Collections Hierarchy

The ArrayList class belongs to the Collections Hierarchy, a library of useful Java interfaces and
utility classes that provide efficient data structures for storing, manipulating, and accessing groups
of objects. Below is a diagram of some of the interfaces and classes within the Java

Collections Hierarchy. The interface and class we discuss in this document are colored green.

------ , Iterable
L Interface 1

class Collection
A

|]
List Set Queue

A
ArraylList HashSet t PriorityQueue

LinkedList LinkedHashSet

SortedSet
t— TreeSet

The different interfaces and classes of the collections hierarchy are used for different purposes. For
an ordered collection of objects that may contain duplicates, then an implementation of the List
interface may be used. If order doesn’t matter and duplicate elements are disallowed, then an
implementation of the Set interface will likely be the better choice. If the elements must be
ordered, then it may be most suitable to use the PriorityQueue class.

You will notice that there are different implementations of the List and Set interfaces shown.
The reasons for choosing one implementation over the other is far beyond the scope AP Computer
Science A and of this document. For students who aren’t satisfied with that answer, a simplified
explanation is: one implementation may be more efficient for certain uses — for example, an
ArrayList may be more efficient when the collection is accessed (read) more frequently than
modified, and a LinkedL1ist may be more efficient when the collection elements will be added or
deleted frequently. For most cases, the choice will be inconsequential.

Page 1 of 7

AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

The List Interface

The List interface defines all the methods required for an implementation of the LiSt interface.
In the diagram on the previous page, there are two different implementations of the List interface
shown: ArrayList and LinkedList. If a program is implemented using an ArrayList and it
is later found that a LinkedList would be more efficient, it can be relatively easy to change the
underlying implementation with minimal changes to the program. (Although this does assume some
competency by the original programmer.)

The methods included in the AP Java Subset that are applicable to the ArrayList class are all
defined in the List interface (or inherited from the Collection interface). These are:

Method Description
E get(int index) Returns the element at position index in the list
boolean add(E obj) If no index is given, the element, 0bj, is appended

void add(int index, E obj) |0 the end of the list and true is returned. If an index
is given, the element, 0b7j, is inserted into the list at
the index given by index, shifting all elements
starting from that index one position to the right.

E set(int index, E obj) Replaces the element at position index with the
element 0b j; returns the element that was previously
at that position.

E remove(int index) Removes the element from position index, shifting
all elements after that element to the left by one index
position.

int size() Returns the number of elements in the list.

You can build a strong understanding of the ArrayList class by completing the guided exercises.

Declaring and Initializing an Object (Review)

In this section, we review how to declare and initialize objects, taking a String object as an

example. The following declaration of a String object allocates a place to store the reference to a

String object. The result of the statement is shown diagrammatically to the right of the statement.
String myString; myString

?

It is important to understand that the statement only creates a place to store the reference to the
String, it does not allocate any space to store a String object. Also, the variable is not
initialized to any particular value (represented by the question mark in the diagram), so trying to
read the value will result in an error.

Page 2 of 7

AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

If we wish to actually instantiate a St ring object, or any other object, we must call the constructor
for the class. The constructor is a special method within the class that shares the same name as the
class and has the purpose of initializing the fields of the class. The following statement declares and
initializes a String object. Again, the result of the statement is shown diagrammatically to the
right of the statement.

String myString = new String("First"); myString
g » First

Java Generics and Declaring an ArrayList

When we declare an array of to store data, we specify the type of element to be stored within the
array, followed by square brackets. For example: String[] myStrArray declares an array that
may store objects of type String (or more accurately references to objects of type String).

When we declare an ArrayList object, the type is ArrayList. Yet we need a way to say what
type of object will be stored as elements within the ArrayList. This is done using generics, also
known as parameterized types.

Recall that the values passed to a method are called the method parameters, and the parameters are
enclosed in parentheses immediately after the method name. For example, the String class has a
method named substring that takes two parameters of type int, named from and to in the
method signature.

String substring(int from, int to)

parameters

When we have a class that requires a type parameter, the type parameter is placed within angle
brackets (between < and >). As examples, an ArrayList requires a type parameter to know what
type of objects the ArrayList will be used to store. The following statement declares an
ArrayList named myStrList that can store objects of type String.

ArrayList<String> myStrList;
If more than one type parameter is required, such as with the Map class, the type parameters are
separated by commas: Map<String, Integer> myMap; .
Initializing an ArrayList

To instantiate an object of any class, the constructor is called. The following statement declares
variable of type ArrayList that will store objects of type St ring. The statement passes the type
String as the type parameter. It then instantiates an object of type ArrayList, again passing the
type String to the constructor as the type parameter.

ArraylList<String> myStrList = new ArraylList<String>();

| S V. — - | S VN —]
data type type reference constructor type no method
parameter variable parameter parameters

The type parameter in the data type (on the left) must be the same as the type parameter passed to
the constructor (on the right). In this example, the ArrayList constructor takes a type parameter
but takes no method parameters — the parentheses are empty.

Page 3 of 7

AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

Java generics (type parameters) were introduced in Java 5, and the type parameter was required
until the “diamond operator” was introduced in Java 7. Now, the angle brackets after the
constructor can be left empty and the type will be inferred from the type parameter passed to the
data type. Thus, the statement below is equivalent to the previous Java statement, with the opening
and closing angle brackets (<>) being referred to as the diamond operator.

ArraylList<String> myStrList = new ArraylList<>();
s ——
type parameter constructor = diamond operator

Using ArraylList

Consider the following code and the diagram that represents the structure created in memory.

1 | String[] myStrArray = new String[2]; myStrArray
2 | myStrArray[0] = "Hello"; N
3 | myStrArray[1] = "World";

Line 1 declares and initializes an empty array that can length| 2

store two elements, while lines 2 and 3 set the references 0| e— Hello

at array index O and array index 1 to the String values

“Hell0” and “Wor 1d”, respectively. S

The following code creates approximately the same data structure, implemented using an
ArrayList rather than an array.

1 | ArrayList<String> myStrList = new ArraylList<>();
2 | myStrList.add("Hello");
3 | myStrList.add("wWorld");

The diagram to the right represents the structure the myStrList

above code creates in memory. Line 1 of the code o

declares and initializes an empty ArrayList that can

store an indefinite number of elements (limited by the o) ._
amount of memory the program can use). Lines 2 and 3

add the String values “He110” and “Wor 1d”, each 1 ._
time to the end of the list.

The remaining methods in the Java AP Subset are described in a table at the end of this document.
Their use will be learned by completing exercises.

Page 4 of 7

AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

When to Use Arrays

Comparing ArrayList to arrays, it may seem that ArrayList, in almost all cases, is more
convenient to use than ArrayList. Here we discuss two particular use cases when we may
choose to use an array rather than an ArrayList: firstly, when the data is unchanging, and
secondly, when there is a lot of data that may be stored as a primitive type.

Use Arrays for Unchanging Data

If the number of data items to be stored is unchanging and known at the time of writing the
program, then initializing an array is slightly more compact and convenient, and the additional
functionality of an ArrayList will not be used. Consider the following data structure and the
code for creating the structure as an array versus as an ArrayList.

myStrList
.\
0 &—
1 e——{ fin |
2] e——{ du]
3| e—1—>{ monde]

Array of String Implementation

1 | String[] myStrArray = { "1la", "fin", "du", "monde" };

ArrayList of String Implementation

ArraylList<String> myStrList = new ArraylList<>();
myStrList.add("la");

myStrList.add("fin");

myStrList.add("du");

myStrList.add("monde");

O~ wWNRE

The array implementation does not require method calls, and the compiler is able create the data
structure. For the ArrayList implementation, creating the data structure requires method calls
and the execution of code. This will be done at run time, so likely adds some small overhead in
execution time and memory use. In almost every way an array is preferable to an ArrayList.

Page 5 of 7

AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

Consider Using an Array for Storing Large Amounts of Primitive Type Data

The type parameter passed to ArrayList must be an object. This means the type parameter
cannot be a primitive type.

In order to store primitive types — such as int, double, or boolean —inanArraylList,
objects of the appropriate wrapper class (Integer, Double, or Boo lean) must be used. The
diagram below compares the data structures created to store a few double types in an array versus
storing the same values in an ArrayList, and example code that will create each structure is
given below the diagram.

—_— 2 *— 7.13
value

Array Implementation ArraylList Implementation
myDoubleArray myDoubleList
N N
o[3.14 o o]
1 1.0
> [7.13 —r— 1.0]
| S —

\ﬂ—l
reference value

Array of doub le Implementation

1 | double[] myDoubleArray = { 3.14, 1.0, 7.13 };

ArrayList of Doub le Implementation

ArraylList<Double> myDoubleList = new ArraylList<>();
myStrList.add(3.14);

myStrList.add(1.0);

myStrList.add(7.13);

A WNBRE

In terms of memory space, the array implementation need only store the data values, whereas the
ArrayList implementation needs to store, at minimum, the data values and the references
(locations where to find the reference values).

In terms of execution time, to access a data item in an array, the computer need only calculate the
offset from the start of the array and read the data value; whereas to access a data item in an
ArrayList, reading the offset from the start of the array results in the reference value, and the
computer is then required to perform another read to get the value that is referred to by the
reference. (Memory fetching and caching is another, more advanced consideration: the values
stored in an array are contiguous, whereas values stored in an ArrayL1ist of objects will likely
not be).

Page 6 of 7

AP Computer Science A — Unit 07: ArrayList English Name:
Java Arr ay L l st Class ©2025 Chris Nielsen — www.nielsenedu.com

Using an ArrayList for primitive types will be much less efficient than using an array. However,
with the speed and memory capacity of modern computers, choosing an array over an ArrayList
should only impact performance when dealing with a very large amount of data or when the data is
used in a performance-critical section.

Java AP Subset ArrayList Methods

The following table provides statements that show the use of common methods that modify an
ArrayList of String, along with equivalent statements for an array of String.

int i = myStrList.size(); int i1 = myStrArray. length;
myStrList.add("world"); There are no array equivalents; this method
myStrList.add(0, "Hello"); appends a new element to the array, or inserts
an element at the given index.
myStrList.set(1, "teacher"); myStrArray[1] = "teacher";
String s = myStrList.get(1); String s = myStrArray[1];
MyStrList.remove(1); There is no array equivalent; this method

removes an element from the list.

Page 7 of 7

